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The exact calculation of a gravity multi-matrix 
superpropagator 

Hans De Meyert 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit-Gent, Krijgslaan 27 1 4 9 ,  
B-9000 Gent, Belgium 

Received 4 March 1976, in final form 14 April 1976 

Abstract. A particular multi-matrix superpropagator, occurring in exponentially paramet- 
rized quantum gravity, is calculated in detail. It is shown that the method used can be 
applied to calculate a whole set of multi-matrix superpropagators. Furthermore it is 
demonstrated that gauges exist in which the superpropagators belonging to the set behave 
well asymptotically. 

1. Introduction 

A powerful technique has been developed by Ashmore and Delbourgo (1973) to 
calculate matrix superpropagators occurring in non-polynomial Lagrangian field 
theories. As an example they have demonstrated that the exponentially parametrized 
gravity superpropagator 

(I-g(x)l"gap (x), I-g(O)l"g,, (0)) (1.1) 

I-g(x)l"g,,(x) = Eexp K 4 ( X ) l W "  (1.2) 

( d a p ( x ) ,  +yS(o)) = i ( ~ l o y q @  + VagqBy - 2 c q a p ~ y S )  A(x), 

with 

can be calculated in closed form for all values of the weight parameter W .  Given the free 
propagator of the matrix field &p in the form 

(1.3) 
where qap is the Minkowski tensor, A ( x )  is the free propagator for the massless scalar 
field and c is a gauge parameter, they first derive an integral representation for the 
matrix superpropagator 

<d:p(x,, &O)> 
for arbitrary N. This superpropagator, written most generally in the form 

<4$(x), 4$(0)) = N!ANb)[b(qaYq@ + qasqpy)bN- T ~ ~ ~ ~ S C N I ,  (1.4) 

(1.5) 

is completely determined by the coefficients aN in the relation 

(Tr 4 N ( ~ ) ,  Tr 4N(0)> = vN!aNAN(x),  

where Y is the dimension of the matrix field. 

t Aspirant NFWO (Belgium). 
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This can readily be seen from the pair of recurrence relations where v = 4: 

96N = 4aN+ 1 - (1 - 4c) 
1 

g c N  = a N + 1 - 5 ( 5  -4c)aN. 

For further use the result for (1.1) is quoted below: 

where 

(1.7) 

a(A) = (2 - 32  + z2/2) exp(-2cz) +[(2 + 32 - z 2 )  

+?.rrz(z + h , ( z )  - $ . ~ ~ Z ~ L ~ ( Z ) ]  exp[(l- ~ C ) Z ] I ~ = ~ Z ~ / ~ .  (1.8) 

b and L1 are the modified Struve functions of zeroth and first order, respectively. 
In this paper it will be demonstrated how the Ashmore transform, which is 

essentially based on Siegel’s integral, helps for finding a closed set of higher order 
superpropagators in closed form. The particular superpropagator 

y= ([exp ~ 4 ( x ) l a f i ,  [exp ~4(O)l~s[exp ~ 4 ( 0 ) 1 ~ ” )  (1.9) 

is calculated in detail as the result may serve to find the realistic gravity superpropagator 

As a by-product of our main results, it is found that the asymptotic behaviour (A(x) + 00) 

of a set of multi-matrix superpropagators can be anticipated; for any propagator of the 
set, a suitable gauge can be chosen which makes the propagator behave asymptotically 
well in the sense that no ambiguities arise in the Green function. 

The importance of Siegel’s integral in the present context is that it gives an 
expression for the determinant of a matrix field to an arbitrary power: 

(1.10) 

(1.11) 

The integration is taken over all $v(v + 1) elements xaP which keep the v x v matrix X 
symmetric and positive definite. Initially representation (1 .lo) is defined for 
Re p > - 1. When v = 1, Siegel’s integral reduces to the conventional definition of the 
gamma function (Von Siege1 1934). 
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2. The superpropagator Y 

Due to Wick's reduction theorem we only need to consider the superpropagator 

(4 :&) , 4 M,(0)4 Cl,(O)> 

with 

L = M + N  

to provide us with an answer for (1.9). Respecting the symmetry of the matrix field chap 
the general form of the expression (2.1) for arbitrary M and N reads: 

<4:0:,<x>, 4M,(0)4;"(0)) 
=L!{A(L; M, N)77ap~y877pu + B ( L ;  M, + ~ ~ ~ 7 7 s ~ )  

+ M N)77&ap77@ + 77av77Bp) + D(L;  M, N)77pv(77ay'l)@ + 77as77Py) 
+ E a ;  M, N)[t7av(77p,77sv + 77P"77SJ+ 77as(77pp77vv + r lSv7)yp)  

+ 77py(77ap77sy + 77av778J + 77@(77ar77vv + 77av77pp,)11AL(x), (2.2) 

with A ( L ;  M, N) ,  . . . , E(L; M, N )  coefficients only depending by (2.1) on M and N. 

explicitly, it is sufficient to determine U(L;  M, N) in 
We will now prove that once the coefficients bN and cN in (1.6) have been spelled out 

(Tr 4L(x) ,  Tr 4"(0) Tr c $ ~ ( O ) )  = vL!U(L; M, N)AL(x) ,  (2.3) 

for all possible values of L , M  and N, in order to evaluate 
A ( L ;  M, N ) ,  . . . , E(L; M, N ) .  

Taking the traces in (2.2), comparison with (2.3) yields: 

v2A(L;  M, N )  +2v[B(L; M, N ) +  C(L; M, N)+D(L;  M, N)]+8E(L;  M, N) 

= U ( L ;  M, N ) ,  (2.4) 

while setting S equal to p in (2.2) and summing over p gives, with the help of equation 
(1.4), the two relations 

A ( L ; M , N ) + ( v + 1 ) B ( L ; M , N ) + 2 E ( L ; M 7 N ) = - c L  

C(L; M, N)+D(L; M, N)+(v+2)E(L; M, N)=$bL. 
(2 .5)  

Finally, direct Wick expansion on (2.3), taking (1.3) into consideration, gives: 

(Tr 4%), Tr 4M(0) Tr 
M N-l ={M4k-', 4Z-I Tr 4N)+N(4k-1, Tr 4 4m7 ) 

-cM(Tr 4'-', Tr 4M-' Tr 4N) - cN(Tr 4=-', Tr 4M Tr +"-')}A(x) 

(2.6) 

(2.7) 

(2.8) 

= L{(+k-l, 4E-l Tr dN)-c(Tr +'-I, Tr +M-' Tr c$~)}A(x) 
M N-1 = L{(4k-l, Tr 4 4, )-c(Tr q5L-1, Tr 4M Tr ~$~- l ) }A(x) .  
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Using equations (2.2) and (2.3), the relations (2.7) and (2.8) can be transformed to give 
the following relations between A ( L ;  M, N), . . . , E ( L ;  M, N) and U(L;  M, N): 

U(L + 1; M +  1, N) + cU(L; M, N) 

= v A ( L ;  M, N)+2[B(L; M, N)+C(L;  M, N ) ]  

+ v(v + l)D(L; M, N )  +4(v + l )E(L;  M, N )  (2.9) 
U ( L  + 1; M, N +  1) + cU(L; M, N) 

= v A ( L ; M , N ) + 2 [ B ( L ; M , N ) + D ( L ; M , N ) ]  

+ v ( v + l ) C ( L ; M , N ) + 4 ( v + l ) E ( L ; M , N ) .  (2.10) 

S(L ; M, N )  = U(L + 1 ; M +  1, N) - U(L + 1 ; M, N + 1) (2.11) 

T ( L ; M , N ) =  U ( L + l ; M + l , N ) + U ( L + l ; M , N + l ) + 2 c U ( L ; M , N ) .  (2.12) 

We further introduce two coefficients S(L;  M, N )  and T(L;  M, N )  defined by 

The set of independent equations (2.4), (2.5), (2.9) and (2.10) satisfied by the coeffi- 
cients A ( L ;  M, N), . . . , E(L;  M, N) yields a unique solution for these coefficients 
which reads, in the case v = 4: 

18A(L;M,N)= ' i j?U(L;M,N) -aT(L;M,N)+~bL+2cL 

18B(L; M, N)=-iU(L;  M, N)+aT(L; M, N ) - ~ ~ L - ~ c L  

18C(L; M, N)=-iU(L;  M, N)+:T(L; M, N)-$S(L;  M, N ) - $ b L  
18D(L; M, N ) = - i U ( L ;  M, N)+iT(L; M, N)+$S(L;  M, N ) - $ ~ L  

18E(L; M, N)=iU(L;  M, N ) - t T ( L ;  M, N ) + $ b L .  

(2.13) 

A ( L ;  M, N), . . . , E ( L ;  M, N) only depend on bL, cL and U coefficients which proves 
our statement. 

It is stated without proof that every superpropagator of the form 

(2.14) 

can be found from the knowledge of a similar superpropagator with k decreased by one 
unit, and from the knowledge of the superpropagator 

(2.15) 

We note that with increasing value of k, the number Sk of different terms in the general 
form of the superpropagator grows very rapidly and is given by 

(Tr c$~(x) ,  Tr 4"'(0) Tr 4",(0). . . Tr 4""O)). 

Sk = (2k +2)!/(k + 1)!2k+'. 

In the case k = 3 there are 105 different terms which from symmetry requirements must 
be ordered into 17 groups, hence requiring 17 coefficients. 

We finally note that equation (2.6) has not been used to find solution (2.13), but it is 
readily seen that equation (2.6) is not independent from equations (2.7) and (2.8). 
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3. An integral representation 

Defining an expectation value 5% by: 

(3.1) 

Siegel’s integral (1.10) is applied three times to W with the substitutions I YI = 11 + ~41, 
1 Y’I = 11 + ~’41, and I I”’[= 11 + ~”41. With the use of the formula 

(exp(-Tr A4(x)), exp(-Tr B4(O)) exp(-Tr W(0))) 
= exp[(Tr AB - c Tr A Tr B)A(x)] exp[(Tr AC- c Tr A Tr C)A(x)], (3.2) 

which holds for arbitrary (v x v )  matrices, A, B and C, we get for 92: 

exp[-Tr X’(1 + K ’ ~ ( O ) ) ]  exp[-Tr X”(1+ ~”+(0))1) 

Xexp[KK’(TrXX’-c TrXTrX’)A(x)] 

X exp[KK”(Tr xx” - c Tr X Tr X”)A(x)] 

9 (3.3) /A”-(u+l)/Z xII-KK”(X-C TrX)A(x))- 

where in the last transition Siegel’s integral has been applied twice in reversed order. 
Differentiating successively with respect to p, p’ and p“ on both sides of (3.3) at the 
point - (v + 1)/2, one gets 

(-Tr ln(1 + K ~ ( x ) ) ,  [-Tr ln(1-k ~’+(o))][-Tr ln(1 +K”c$(~))]) 

x A(x)J{-Tr In[ 1 - KK”(X- c Tr X)A(x)]}. (3.4) 

Terms of order ( K K ‘ ) ~ “ K ’ ’ ) ”  = K ~ K ” K ’ ”  are taken from both sides of (3.4) to reach the 
integral representation 

(Tr dL(x), Tr 4M(0) Tr 4”(O)) = LAL(x) acrlr=-(u+i)/z$:C)(p; M, N), (3.5) 

$:)(p; M Y  N) = I, .TTu(u-1)/4ru(p) dX’XJC” [exp(-Tr X)] Tr[(X- c Tr X)”] Tr[(X- c Tr X)”]. 

(3 .a 
We note that setting either M or N equal to zero in (3.5) and (3.6) with the definition 
Tr do(x) = v, gives the A s h o r e  result. To simplify, a relation is sought between 
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I F ) ( p ;  M, N) and I'Q'(p; M, N ) :  

x(-c Tr X)'+N-m-n Tr(Xm) Tr(X") 

X[exp(-b Tr X ) ]  Tr(X")Tr (X")l,=,. 

Rescaling X by the factor b results in: 

The arguments outlined in this section could be repeated for all propagators (2.15). For 
arbitrary values of k the problem is always reduced to the calculation of the multiple 
integral 

(0) I ,  ( p ;  ml, m2,. . . m d  

[exp(-Tr X) ]  Tr(Xml) Tr(X'? . . . Tr(Xmk). (3.8) 
- dXIX1' - 

7 r v ( ~ - 1 ) / 4  

The multiple integrals (3.8) for arbitrary k > 0 have the common feature of being 
involved only in the integrand functions of X invariant under similarity transforma- 
tions. This property enables one to bring the symmetrical X into diagonal form. 
Although with increasing k the algebraic calculations become more tedious, a standard 
technique can be outlined to evaluate (3.8). In the next sections I!,')(p; m, n)  will be 
calculated for arbitrary m and n. Note that it is only for simplicity that v = 4 since the 
calculations may be carried out for other integer values of I/ as well. 

4. A formula for U(L; M, N) 

As stated at the end of the previous section, the matrix X in 

~kO)(p; m, n ) = 7  - [exp(-Tr X ) ]  Tr(Xm) Tr(Xn), (4.1) 
7r J 9 dx'x'w r4(cL) 

is diagonalized to A by 

where 8 symbolizes a set of v(v- 1)/2 angular parameters. Taking into account the 
Jacobian of the transformation defined by 
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where J is depending solely on the angular parameters comprised in (4.1), becomes 

with y4 a normalization constant determined by the condition that I?'(p; 0,O) = 
v2 = 16. 

Now, the Ashmore algorithm can be applied to the remaining fourfold integral (4.2). 
The result is: 

where (Pfaff)[, is the Pfaflian which is deduced from the scheme 

(a1.2 a1,3 ai.11 

a2,3 a2,4 ' (4.4) 

awl 
by adding m to every subscript which is equal to 1 and also adding n to every subscript 
which is equal to p ,  and every a symbol obtained in this way is given by 

00 m 

aii= Jo dh Jo dh' E ~ ( A ) E ~ ( A ' )  sgn(A'-A), (4.5) 

with 
E,(h) = e .  - A  

As the dimension equals 4, equation (4.3) can be rewritten as: 

where the indices i f  and j '  are the indices of the cofactor of the element aii in the scheme 
(4.4) and (-l)p is the sign of the permutation ( i j i ' j ' )  of the natural order (1234). The 
quantities a$""') and a!?) are defined by 

ai?")=i(ai+m+n.j+ ai,j+m+n+ ai+m,j+n+ ai+n,j+A, (4.7) 

(4.8) 

(4.9) 

a("' -1 
i j  - 2(ai,j+m+ ai+mJ* 

I] (2) 

Substituting (4.5) in the right-hand side of (4.8) it is found that 

r(2p + i + j +  m)aiy', 1 Z r + i + i + m  

with 

(4.10) 

where L means a modified Struve function. 
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With the same notations it is found from the substitution of (4.5) in the right-hand 

(4.11) 
side of (4.7) that 

a{lv) = ($)z(l+i+j+m+n r(2p + i + j  + m + n)aIFn) ,  

with 
a IF"' = $a I;+n) +4aiO!,j+n + aa 1 (0) i+n,j+m. 

Recalling the definition (1.11) of it is easy to show that 

r4(,4 = +2)r(2p +4). 

(4.12) 

(4.13) 

Finally it is noted that 
i '+j '= 10-i-j. (4.14) 

From the comparison of the equations (2.3) and (3.5) one finds, having used the results 
(3.7) and (4.6)-(4.14), the following expression for the coefficients U(L;  M, N): 

x [ ~ ( 2 ~  + i  + j +  m +n)r(2p + IO-  i - j ) ( - ~ ) ~ a ~ ~ ~ ) a $ ~  

(4.15) 

Apart from the factor I'(M+N+4p + lo), the expression in the large parentheses is 
identically zero at p = - 5/2. 

Indeed as 3 s i + j s 7 ,  the two r functions in the numerator only have a pole 
simultaneously for some i and j value when m = n = 0. In that case however the three r 
functions in the denominator have a pole and the result is zero. If m + n # 0, the result 
remains zero as the denominator has a pole of at least one order greater than the order 
of the pole in the numerator. Consequently (4.15) can be rewritten as 

+r(2p + i + j +  m)r(2p + IO-  i - - j+n)(- l )  P aij (m) a,.,.]). ( n )  

(4.16) 

and this expression is valid for all values of L 3 0. 

5. Reduction of U@; M, N) 

We shall now further reduce the right-hand side of (4.16). As analogous argument to 
the one at the end of the previous section shows that, given fixed values for m and n, 
only those values of i and j must be taken into account which make the argument of at 
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least one of the two functions in the numerator become zero or a negative integer. Let 
us first calculate 

If m + n = O ,  a first non-zero contribution to 9 is found for i + j = 5 .  With the 
intermediate result 

Proceeding in a similar way for all m and n values the following expression for 9 is 
found: 

A second contribution to U ( L ;  M, N) comes from 

(5.3) 
A similar calculation to the one used for 9 gives 

The normalization constant y4 is fixed by computing the coefficient U(0; 0,O). For this 
purpose, use is made of some values for a$) ( q  C 2) which can be read off from table 1, 

Table 1. Some values of a:;' and ( i >  j ,  9G2,  9 + ~ < 2 ) .  

Superscript a12 a13 a14 a23 a24 a34 
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and we find that 

and y4 must be equal to T/  12 in order to give the exact result U(0; 0,O) = 16, which can 
be deduced from equation (2.3) with v = 4. In a similar way it is calculated from 
equations (4.6), (5.1)-(5.4) that 

U(l;O, 1)= U(1; 1 , 0 ) = 4 ( 1 - 4 ~ ) ,  

U(2; 1 , l )  = (1 -4c)2, 

which is in perfect agreement with the value of the same coefficients calculated from 
equations (1.3) and (2.3) by direct Wick reduction. Substituting the expressions (5.2) 
and (5.4) in equation (4.16) brings U(L;  M, N) firstly into the form: 

U ( L ;  M, N) = 4(-C)M+N - 3 ( - C ) M + N - 1  ( M +  N )  +&c)M+N-2[(M-N)2 - (M+N)] 

+-M(M- 1 

+-"(N- 1 

+ - N ( - C y -  f 

1 ) ( - - p 2  2 (7 ( - C ) N - n ( ; ) ' a : . a  

1)(-c)N-2 f (2 ( - C y - m ( ; p : )  

16 n=o n 

16 m =O 

1 
4 m=O m 
1 

(-#-" (i) m[(m + 1)a 2 + 2a 2 1  

n=O 

- - ( - c ) ~  1 f ( ~ ( - c ) " - " ( ~ > ' [ n ( n  + l)a:"4+4na:"a+6a~)+ 2a&)]. 
4 n=O 

(5 .5 )  

To obtain the result (5 .5 )  again, some values from table 1 have been used. Introducing 
the definitions (4.10) into ( 5 . 3 ,  the following expression for U(L;  M, N) is found: 

U(L;  M, N )  = 4 ( - ~ ) ~ + ~  - 3 ( - ~ ) ~ + ~ - '  ( M + N )  ++(-C)M+N-2[(M-N)2 - (M+N)] 
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+ 8( 5 + a2)]aa (z)lz =o + -M(M - 1 )( - c )M-2  2 (r) 
{[1'6 n = O  

n = O  

The result (5.6) is essential for the calculation of the gravity superpropagator in the 
following section. 

6. The gravity superpropagator 

If one tries to calculate the superpropagator 

(I-g(x)l"g,s ( X I ,  I-g(O)l"g, ~ ~ ) l - g ( o ) / " g , " ( o ) ) ~  (6.1) 

g,"(x) = [exp ~ h ( x ) I , ~ ,  (6.2) 

(hae(x), h,(O)) = g q a v q p 6  +qa6qpy -2c'7 /aP77y61A(x) ,  (6.3) 
it is sufficient to calculate the superpropagator 5 defined in (1.9), with the matrix field 
C $ ~ ~ ( X )  defined in (1.2) and the free propagator (1.3). It was already demonstrated by 
Ashmore that the gauge parameters c and c' are related in the following manner: 

with the graviton field h,,(x) defined by the relation 

and having a free propagator of the form 

( 1 - 4 ~ ) = ( 1 - 4 ~ ' ) ( 1 + 4 ~ ) ~ .  (6.4) 
In what follows we shall calculate the superpropagator 5, keeping in mind that at the 
end, the parameter c must be expressed in terms of the gauge parameter c' and the 
weight parameter o. 

Expanding the right-hand side of formula (1.9) with respect to the parameter K we 
find 

Replacing the superpropagator in the right-hand side of (6.5) by its general form (2.2) 
and afterwards introducing the solution (2.13) in the expression obtained, it is 
immediately seen that only 
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with 

A = K ~ A ( x ) ,  (6.7) 

and F ( L ;  M, N) standing for U(L;  M, N), S(L; M, N), T(L;  M, N), bL or cL, have to be 
calculated. 

It is easy to show with the help of the definition (2.1 1) and the expression (5.6), that 
Se, = 0, which also means that C,, = De, according to (2.13). This result could have 
been predicted from the fact that the superpropagator (1.9) is invariant to an inter- 
change of the (3: 6) indices with the (p, v) indices. 

Further, the formula 

and an analogous formula for c,, show that be, and c,, can be deduced from the 
A s h o r e  calculus and may be more precisely recovered from the formulae (1.7) and 
(1.8) after replacing K~ by 2~~ in (1.8). The evaluation of T,, is also much simplified by 
noting that the identity 

m A M + N  

M = O  N = O  M ! N !  d A f  z- u(L; M, N ) S L , M + N  

= 5 2 hMt”[ U(L + 1 ; M + 1, N )  + U ( L  + 1 ; M, N + ~)]SL,M+N, 
M=O N=O M ! N !  

applied in reverse order to the definition equation (2.12) leads us to the relation 

(6.8) 
d 

dh 
T,,=- U,,+~CU,,. 

It is thus clear that only U,, needs further detailed calculation. In doing so, after 
straightforward calculation the following intermediate result for U,, is found: 

A 
2 

[ (5 + d2) + - ( 1 + a)( 1 - d2)(5 - d2) e2A(l/2-c) 

(6.9) 
A 2  - Ad ( 1 - d2)( 5 - 8’) + 7 (2 - d2)( 1 - d2)2] h’ (=)I, = A / 2 ,  

with 

A = K ~ A ( x ) .  

Making use of (4.10) it is possible to express the right-hand side of (6.9) in terms of the 
modified Struve functions of zeroth and fist  order to obtain the final result: 

[-4 -6A + $ A 2  - $ d ( A  +i)b(A) + i ~ A ~ L l ( h ) ]  U ex 
= 4e-2hC - ~ A ~ - ~ A C  - e2A\(1/2-c) 

+ e 2 ~ ( 1 / 4 - ~ )  [8 +;A2 +$db(;A) +a?rA2L1(iA)]. (6.10) 
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Furthermore we also deduce 

with 

a(A) = (2-3,4 +Sh2)e-2Ac+e2A(1/2-') [2 +3h - h2  + $ ~ h ( h  +;)&(A) -fd2L1(h)J. 

(6.11) 

It is now only a matter of direct substitution of the expressions (6.10) and (6.11) in the 
right-hand sides of: 

1 3 - 1 2 ~  3 d 7 
18Ae,= (T-- 4 - dh ) v e x  + qbex + 2cex  

- 3 + 4 ~  1 d 5 
18Bex= (T+- 4 -) dh Uex-qbex-4cex 

(6.12) 

- 3 + 1 2 ~  3 d 9 
18Dex = ( 8 +- 4 -) dh uex-qbex 

1 - 4 ~  1 d 9 
BEex = --- -) Uex+qbex 

8 4 d h  

which are a consequence of (2.13), to obtain the superpropagator in closed form. Note 
that the parameter c must then be expressed in terms of the gauge parameter c'. The 
superpropagator T i s  an entire function of the free propagator A(x) and it is readily seen 
from the above results that its asymptotic behaviour as A+ CO is 

(6.13) 

where the summation is taken over the 15 permutations of the 6 indices specified by the 
general form (2.2). 

All the calculations in the last four sections could be repeated for the higher-order 
multi-matrix superpropagators mentioned at the end of 0 2, although to carry out these 
computations would become an enormous task. Nevertheless it is possible to predict 
the leading behaviour of these superpropagators as A+co. Indeed, for an arbitrary 
superpropagator 

9 = ((exp K + ( x ) ) , ~ ,  (exp ~+(o) ) , ,p ,  . . . (exp K ~ ( O ) ) , ~ ~ ) ,  (6.14) 

there will appear in the result a term 
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from which it follows that 
3/2 kK*( l - c )A(X)  9'-(~'A(x)) e 7 

as A+m. 
(6.15) 

7. Condusions 

It has been demonstrated that the Ashmore calculus for the evaluation of the super- 
propagator (1.1) which arises in quantum gravity, can be used to calculate in closed form 
a whole class of multi-matrix superpropagators. In order to be able to apply the 
calculus, it is essential-to find for each superpropagator an integral representation the 
integrand of which only contains expressions that are invariant with respect to a 
similarity transformation. Therefore the method does not directly help to obtain a finite 
expression for the three-point function 

(I - g ( x  1 I "gap ( x  ) , I - g ( Y ) I "gy, ( Y ) , I - g (2 1 I "g,, (z )) , (7.1) 

(l-g(x)l"gap (x)l-g(x)l"g&), l - ~ ~ ~ ~ l " ~ , u ~ ~ ~ l - ~ ~ ~ ~ l " ~ , ~ ~ ~ ~  (7.2) 

and the realistic superpropagator 

arising in electrodynamics where 

L - -aFpTKAgLIK ( x ) g  " ( x ) .  

More powerful techniques must be developed to handle these propagators. Neverthe- 
less the detailed calculation of the particular superpropagator (1.9) leads to an 
important simplification in (7.2). It was indicated at the end of § 2 that the super- 
propagator (7.2) involves 17 coefficients. This number can be reduced drastically with 
the help of the result for (1.9), as may be seen from the fact that contractions of the form 

are related directly to (1.9). We are currently investigating the problem of how to 
extend the formalism to include the important case (7.2). It is also found that the 
superpropagator (1.9) behaves asymptotically well in the sense given to it by Salam 
(1974), to say that the gauge parameter c' can always be chosen such that no ambiguities 
arise as A(x) tends to infinity. From expression (6.15) it is seen that a suitable choice for 
c' (or c) makes all propagators of the form (6.14) behave well as A +  CO. It is also a 
striking result that the fractional power of A in (6.15) remains unchanged for all values 
of k. The simple form of expression (6.15) suggests that a method might exist to obtain 
the asymptotic behaviour of the superpropagators avoiding their calculation in closed 
form. 
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